

Interpolants from SAT solving certificates

Adrián Rebola-Pardo Martin Matak Georg Weissenbacher TU Wien

Helmut Veith Workshop Obertauern, Austria

Janary 31, 2018

Supported by FWF W1255-N23 and Microsoft Research through its PhD Programme

$I(V) \wedge T(V,V^{'}) \quad \neg P(V^{'})$

$I(V) \wedge T(V,V^{'}) \neg P(V^{'})$

■ Image computation amounts to quantifier elimination: $\exists V . I(V) \land T(V, V')$

$I(V) \wedge T(V, V^{'}) \neg P(V^{'})$

- Image computation amounts to quantifier elimination: $\exists V . I(V) \land T(V, V')$
- Can we safely approximate the post-image of *T*?

- Image computation amounts to quantifier elimination: $\exists V . I(V) \land T(V, V')$
- Can we safely approximate the post-image of *T*?

Propositional interpolants

Let A, B be propositional formulae such that $A \wedge B$ is unsatisfiable

Propositional interpolants

Let A, B be propositional formulae such that $A \wedge B$ is unsatisfiable

Interpolants an (A, B)-interpolant is a propositional formula P such that:

- $\blacksquare A \models P$
- $P \land B$ is unsatisfiable
- $\blacksquare P$ contains only shared variables between A and B

Propositional interpolants

Let A, B be propositional formulae such that $A \wedge B$ is unsatisfiable

Interpolants an (A, B)-interpolant is a propositional formula P such that:

- $\blacksquare A \models P$
- $P \land B$ is unsatisfiable
- $\blacksquare P$ contains only shared variables between A and B

Interpolants are essential tools in formal methods and software verification:

- (Un)bounded model checking [McMillan '03]
- Boolean synthesis [Jiang et al. '09]
- Fault localization [Ermis et al. '12]
- Hardware verification [Keng Veneris '09]

Interpolation in practice

The good old times...

The good old times are gone

The good old times are gone

Properties of DRAT / PR proofs

- Shorter and easier to generate or check than resolution proofs
- Allow to express satisfiability-preserving techniques

The good old times are gone

Properties of DRAT / PR proofs

- Shorter and easier to generate or check than resolution proofs
- Allow to express satisfiability-preserving techniques
- ✗ We do not know how to generate interpolants from DRAT / PR proofs

Three approaches

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven CDCL clause learning Purely CDCL Communicating SAT solver +SAT solver SAT solvers Blocked clause & friends addition Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof interpolation ??? system interpolant

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven CDCI clause learning Blocked clause NO INTERPOLANT Purely CDCL Communicating SAT solver SAT solvers addition Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof interpolation ??? system interpolant

Three approaches

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven CDCI clause learning Blocked clause NO INTERPOLANT Purely CDCL Communicating SAT solver SAT solvers addition Gaussian elimination resolution/DRUP DRAT / PR interpolant proof proof [Huang '95] [Pudlák '97] interpolation [McMillan '05] ??? system [D'Silva et al. '10] [Gurfinkel Vizel '14] [Weissenbacher Schlaipfer '16] interpolant

Three approaches

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven CDCL clause learning Blocked clause NO INTERPOLANT Purely CDCL Communicating SAT solver SAT solvers addition exponential gap Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof [Huang '95] [Pudlák '97] interpolation [McMillan '05] ??? system [D'Silva et al. '10] [Gurfinkel Vizel '14] [Weissenbacher Schlaipfer '16] interpolant

4

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven TOO INEFFICIENT CDCL clause learning Blocked clause NO INTERPOLANT Communicating SAT solvers addition exponential gap Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof [Huang '95] [Pudlák '97] interpolation [McMillan '05] ??? system [D'Silva et al. '10] [Gurfinkel Vizel '14] [Weissenbacher Schlaipfer '16] interpolant

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven TOO INEFFICIENT CDCL clause learning Blocked clause NO INTERPOLANT Communicating SAT solvers addition exponential gap Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof [Huang '95] [Chockler et al. '12] [Pudlák '97] [Bayless et al. '13] [McMillan '05] interpolation ??? system [D'Silva et al. '10] [Gurfinkel Vizel '14] [Weissenbacher Schlaipfer '16] interpolant

unsatisfiable CNF instance Symmetry breaking Satisfiability-driven MODEL ENUMERATION CDCL clause learning TOO INEFFICIENT Blocked clause NO INTERPOLANT addition exponential gap Gaussian elimination DRAT / PR resolution/DRUP interpolant proof proof [Huang '95] [Chockler et al. '12] [Pudlák '97] [Bayless et al. '13] [McMillan '05] interpolation ??? system [D'Silva et al. '10] [Gurfinkel Vizel '14] [Weissenbacher Schlaipfer '16] interpolant

Proof systems for SAT solvers

DRUP proof system RUP introduction + arbitrary clause deletion

DRUP proof system RUP introduction + arbitrary clause deletion

- Essentially as powerful as resolution [Beame et al. '04]
- Interpolants can be easily generated [Gurfinkel Vizel '14]

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F

$$\begin{array}{c} F \\ \circ \\ \circ \\ \bar{l} \lor D \end{array} \\ \overline{l} \lor D \end{array}$$

 $^{\oplus}$ $l \lor C$

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F

æ

 $l \vee C$

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F

Theorem If C is a RAT in F, then F is satisfiable if and only if $F \cup \{C\}$ is RAT introduction can be used as an inference rule of a proof system

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F

Theorem If C is a RAT in F, then F is satisfiable if and only if $F \cup \{C\}$ is RAT introduction can be used as an inference rule of a proof system

DRAT proof system

RUP introduction + RAT introduction + arbitrary clause deletion

 polynomially simulates extended resolution [Heule Kiesl Rebola-Pardo '18]

Interpolation from DRAT proofs

RATs, consequences and latency

RATs, consequences and latency

RATs, consequences and latency

But when? As soon as the pivot literal is eliminated by resolution

But when? As soon as the pivot literal is eliminated by resolution

7

But when? As soon as the pivot literal is eliminated by resolution

Question Can we obtain a resolution proof of that consequence clause?

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Elimination repeat until only clauses $C \otimes_l D$ need to be derived C is the original RAT upon l in FD is a clause in F

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Elimination repeat until only clauses $C \otimes_l D$ need to be derived C is the original RAT upon l in FD is a clause in F

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Elimination repeat until only clauses $C \otimes_l D$ need to be derived C is the original RAT upon l in FD is a clause in F

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Elimination repeat until only clauses $C \otimes_l D$ need to be derived C is the original RAT upon l in F D is a clause in F $\Rightarrow C \otimes_l D$ is a RUP

Resolution consequence every resolvent upon *l* is a consequence of *F* all infested clauses are RCs upon *l*

Goal derive A_4 without using infested clauses \Rightarrow derive $E_1 \otimes_l E_3$ and $E_2 \otimes_l E_3$ without using infested clauses

Elimination repeat until only clauses $C \otimes_l D$ need to be derived C is the original RAT upon l in F D is a clause in F $\Rightarrow C \otimes_l D$ is a RUP

Conclusion

axioms from F

Issues

- The interpolant may be exponential with respect to the DRAT proof ... but DRAT proofs can be exponentially shorter than DRUP proofs
- Currently we only eliminate RATs one by one Open question: can PR clauses be exploited to overcome this?
- Prototype by Martin Matak; Implementation by Adrián Rebola-Pardo (evaluation pending)